skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kontorovich, Aryeh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce a framework for performing vector-valued regression in finite-dimensional Hilbert spaces. Using Lipschitz smoothness as our regularizer, we leverage Kirszbraun’s extension theorem for off-data prediction. We analyze the statistical and computational aspects of this method—to our knowledge, its first application to supervised learning. We decompose this task into two stages: training (which corresponds operationally to smoothing/regularization) and prediction (which is achieved via Kirszbraun extension). Both are solved algorithmically via a novel multiplicative weight updates (MWU) scheme, which, for our problem formulation, achieves significant runtime speedups over generic interior point methods. Our empirical results indicate a dramatic advantage over standard off-the-shelf solvers in our regression setting. 
    more » « less